Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Altered intracellular calcium homeostasis and endoplasmic reticulum redox state in Saccharomyces cerevisiae cells lacking Grx6 glutaredoxin.

Identifieur interne : 000574 ( Main/Exploration ); précédent : 000573; suivant : 000575

Altered intracellular calcium homeostasis and endoplasmic reticulum redox state in Saccharomyces cerevisiae cells lacking Grx6 glutaredoxin.

Auteurs : Judit Puigpin S [Espagne] ; Celia Casas [Espagne] ; Enrique Herrero [Autriche]

Source :

RBID : pubmed:25355945

Descripteurs français

English descriptors

Abstract

Glutaredoxin 6 (Grx6) of Saccharomyces cerevisiae is an integral thiol oxidoreductase protein of the endoplasmic reticulum/Golgi vesicles. Its absence alters the redox equilibrium of the reticulum lumen toward a more oxidized state, thus compensating the defects in protein folding/secretion and cell growth caused by low levels of the oxidase Ero1. In addition, null mutants in GRX6 display a more intense unfolded protein response than wild-type cells upon treatment with inducers of this pathway. These observations support a role of Grx6 in regulating the glutathionylation of thiols of endoplasmic reticulum/Golgi target proteins and consequently the equilibrium between reduced and oxidized glutathione in the lumen of these compartments. A specific function influenced by Grx6 activity is the homeostasis of intracellular calcium. Grx6-deficient mutants have reduced levels of calcium in the ER lumen, whereas accumulation occurs at the cytosol from extracellular sources. This results in permanent activation of the calcineurin-dependent pathway in these cells. Some but not all the phenotypes of the mutant are coincident with those of mutants deficient in intracellular calcium transporters, such as the Golgi Pmr1 protein. The results presented in this study provide evidence for redox regulation of calcium homeostasis in yeast cells.

DOI: 10.1091/mbc.E14-06-1137
PubMed: 25355945
PubMed Central: PMC4279222


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Altered intracellular calcium homeostasis and endoplasmic reticulum redox state in Saccharomyces cerevisiae cells lacking Grx6 glutaredoxin.</title>
<author>
<name sortKey="Puigpin S, Judit" sort="Puigpin S, Judit" uniqKey="Puigpin S J" first="Judit" last="Puigpin S">Judit Puigpin S</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, 25198 Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, 25198 Lleida</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Casas, Celia" sort="Casas, Celia" uniqKey="Casas C" first="Celia" last="Casas">Celia Casas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, 25198 Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, 25198 Lleida</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Herrero, Enrique" sort="Herrero, Enrique" uniqKey="Herrero E" first="Enrique" last="Herrero">Enrique Herrero</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, 25198 Lleida, Spain enric.herrero@cmb.udl.cat.</nlm:affiliation>
<country wicri:rule="url">Autriche</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, 25198 Lleida</wicri:regionArea>
<wicri:noRegion>25198 Lleida</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25355945</idno>
<idno type="pmid">25355945</idno>
<idno type="doi">10.1091/mbc.E14-06-1137</idno>
<idno type="pmc">PMC4279222</idno>
<idno type="wicri:Area/Main/Corpus">000585</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000585</idno>
<idno type="wicri:Area/Main/Curation">000585</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000585</idno>
<idno type="wicri:Area/Main/Exploration">000585</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Altered intracellular calcium homeostasis and endoplasmic reticulum redox state in Saccharomyces cerevisiae cells lacking Grx6 glutaredoxin.</title>
<author>
<name sortKey="Puigpin S, Judit" sort="Puigpin S, Judit" uniqKey="Puigpin S J" first="Judit" last="Puigpin S">Judit Puigpin S</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, 25198 Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, 25198 Lleida</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Casas, Celia" sort="Casas, Celia" uniqKey="Casas C" first="Celia" last="Casas">Celia Casas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, 25198 Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, 25198 Lleida</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Herrero, Enrique" sort="Herrero, Enrique" uniqKey="Herrero E" first="Enrique" last="Herrero">Enrique Herrero</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, 25198 Lleida, Spain enric.herrero@cmb.udl.cat.</nlm:affiliation>
<country wicri:rule="url">Autriche</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, 25198 Lleida</wicri:regionArea>
<wicri:noRegion>25198 Lleida</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Calcium (metabolism)</term>
<term>Cell Cycle (MeSH)</term>
<term>Cytoplasm (metabolism)</term>
<term>Cytosol (metabolism)</term>
<term>Endoplasmic Reticulum (metabolism)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Golgi Apparatus (metabolism)</term>
<term>Homeostasis (MeSH)</term>
<term>Ion Transport (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protein Transport (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sulfhydryl Compounds (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Appareil de Golgi (métabolisme)</term>
<term>Calcium (métabolisme)</term>
<term>Cycle cellulaire (MeSH)</term>
<term>Cytoplasme (métabolisme)</term>
<term>Cytosol (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Homéostasie (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Réticulum endoplasmique (métabolisme)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Thiols (métabolisme)</term>
<term>Transport des ions (MeSH)</term>
<term>Transport des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calcium</term>
<term>Glutaredoxins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytoplasm</term>
<term>Cytosol</term>
<term>Endoplasmic Reticulum</term>
<term>Golgi Apparatus</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Appareil de Golgi</term>
<term>Calcium</term>
<term>Cytoplasme</term>
<term>Cytosol</term>
<term>Glutarédoxines</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Réticulum endoplasmique</term>
<term>Saccharomyces cerevisiae</term>
<term>Thiols</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Cycle</term>
<term>Homeostasis</term>
<term>Ion Transport</term>
<term>Oxidation-Reduction</term>
<term>Protein Transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cycle cellulaire</term>
<term>Homéostasie</term>
<term>Oxydoréduction</term>
<term>Transport des ions</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxin 6 (Grx6) of Saccharomyces cerevisiae is an integral thiol oxidoreductase protein of the endoplasmic reticulum/Golgi vesicles. Its absence alters the redox equilibrium of the reticulum lumen toward a more oxidized state, thus compensating the defects in protein folding/secretion and cell growth caused by low levels of the oxidase Ero1. In addition, null mutants in GRX6 display a more intense unfolded protein response than wild-type cells upon treatment with inducers of this pathway. These observations support a role of Grx6 in regulating the glutathionylation of thiols of endoplasmic reticulum/Golgi target proteins and consequently the equilibrium between reduced and oxidized glutathione in the lumen of these compartments. A specific function influenced by Grx6 activity is the homeostasis of intracellular calcium. Grx6-deficient mutants have reduced levels of calcium in the ER lumen, whereas accumulation occurs at the cytosol from extracellular sources. This results in permanent activation of the calcineurin-dependent pathway in these cells. Some but not all the phenotypes of the mutant are coincident with those of mutants deficient in intracellular calcium transporters, such as the Golgi Pmr1 protein. The results presented in this study provide evidence for redox regulation of calcium homeostasis in yeast cells. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25355945</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Altered intracellular calcium homeostasis and endoplasmic reticulum redox state in Saccharomyces cerevisiae cells lacking Grx6 glutaredoxin.</ArticleTitle>
<Pagination>
<MedlinePgn>104-16</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E14-06-1137</ELocationID>
<Abstract>
<AbstractText>Glutaredoxin 6 (Grx6) of Saccharomyces cerevisiae is an integral thiol oxidoreductase protein of the endoplasmic reticulum/Golgi vesicles. Its absence alters the redox equilibrium of the reticulum lumen toward a more oxidized state, thus compensating the defects in protein folding/secretion and cell growth caused by low levels of the oxidase Ero1. In addition, null mutants in GRX6 display a more intense unfolded protein response than wild-type cells upon treatment with inducers of this pathway. These observations support a role of Grx6 in regulating the glutathionylation of thiols of endoplasmic reticulum/Golgi target proteins and consequently the equilibrium between reduced and oxidized glutathione in the lumen of these compartments. A specific function influenced by Grx6 activity is the homeostasis of intracellular calcium. Grx6-deficient mutants have reduced levels of calcium in the ER lumen, whereas accumulation occurs at the cytosol from extracellular sources. This results in permanent activation of the calcineurin-dependent pathway in these cells. Some but not all the phenotypes of the mutant are coincident with those of mutants deficient in intracellular calcium transporters, such as the Golgi Pmr1 protein. The results presented in this study provide evidence for redox regulation of calcium homeostasis in yeast cells. </AbstractText>
<CopyrightInformation>© 2015 Puigpinós et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Puigpinós</LastName>
<ForeName>Judit</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, 25198 Lleida, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Casas</LastName>
<ForeName>Celia</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, 25198 Lleida, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Herrero</LastName>
<ForeName>Enrique</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, 25198 Lleida, Spain enric.herrero@cmb.udl.cat.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C527470">Grx6 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002453" MajorTopicYN="N">Cell Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006056" MajorTopicYN="N">Golgi Apparatus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017136" MajorTopicYN="N">Ion Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25355945</ArticleId>
<ArticleId IdType="pii">mbc.E14-06-1137</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E14-06-1137</ArticleId>
<ArticleId IdType="pmc">PMC4279222</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cardiovasc Res. 2006 Jul 15;71(2):310-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 May;16(5):2226-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8628289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Feb 5;47(5):1452-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Apr;1783(4):549-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Apr;1783(4):641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18331844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 May 16;283(20):13923-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18362157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Jun;19(6):2673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Aug;7(8):1415-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18503006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Nov 28;135(5):933-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19026441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Jan 15;46(2):154-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18973803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Jan 15;8(2):239-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2010 Mar;74(1):95-120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20197501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protein Pept Sci. 2010 Dec;11(8):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21235502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Mar 25;286(12):10744-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21252230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(6):e21148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21698264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Calcium. 2011 Aug;50(2):129-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21377728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Biol Lett. 2011 Dec;16(4):539-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21837552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Nov 25;334(6059):1081-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22116877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2012 Mar 19;196(6):713-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22412017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Mar;193(3):677-713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23463800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3217-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23036594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6859-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23569283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Nov;1833(11):2425-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23434683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1996 Aug 26;392(2):194-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8772202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Dec 15;11(24):3432-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9407035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Feb 15;26(4):942-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1998 May;9(5):1149-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9571246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1998 Jan;1(2):161-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9659913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1998 Jan;1(2):171-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9659914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Sep 15;14(12):1127-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9778798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Sep 1;18(17):4733-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10469652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1999 Oct;15(14):1541-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(9):R77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16168084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2006 Mar;6(2):171-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16487340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(12):e85519</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24392018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Histol Histopathol. 2014 May;29(5):543-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24197491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2014 Jun;13(6):694-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24681686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Dec 14;131(6):1047-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18083096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 1999 Jul;1(3):130-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Apr 28;101(3):249-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10847680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Sep;20(18):6686-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10958666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 3;276(31):29515-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11390404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 May 15;21(10):2343-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12006487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2002 Jun 10;157(6):1017-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12058017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:3-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 23;277(34):31079-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12058033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Nov;13(11):3955-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12429838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Oct;14(10):4296-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14517337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Nov 28;311(4):1143-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14623300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2004 Jan 5;164(1):35-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14699087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2004 Feb 15;293(2):185-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Mar 25;260(6):3440-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3838314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1988 Dec 30;74(2):527-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3073106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1989 Oct 9;256(1-2):55-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2680600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1992 Jun;3(6):633-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1379856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Mar 11;269(10):7273-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8125940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Mar 11;269(10):7279-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8125941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Aug 26;269(34):21480-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8063782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Dec;10(13):1793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7747518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1996 Jan 22;379(1):38-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8566225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2006 Mar;7(3):271-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16607396</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Autriche</li>
<li>Espagne</li>
</country>
<region>
<li>Catalogne</li>
</region>
</list>
<tree>
<country name="Espagne">
<region name="Catalogne">
<name sortKey="Puigpin S, Judit" sort="Puigpin S, Judit" uniqKey="Puigpin S J" first="Judit" last="Puigpin S">Judit Puigpin S</name>
</region>
<name sortKey="Casas, Celia" sort="Casas, Celia" uniqKey="Casas C" first="Celia" last="Casas">Celia Casas</name>
</country>
<country name="Autriche">
<noRegion>
<name sortKey="Herrero, Enrique" sort="Herrero, Enrique" uniqKey="Herrero E" first="Enrique" last="Herrero">Enrique Herrero</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000574 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000574 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25355945
   |texte=   Altered intracellular calcium homeostasis and endoplasmic reticulum redox state in Saccharomyces cerevisiae cells lacking Grx6 glutaredoxin.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25355945" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020